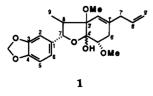
CHEMICAL CONSTITUENTS OF PIPER SCHMIDTII:¹ STRUCTURE OF A NEW NEOLIGNAN SCHMIDITIN

NEERJA JOSHI, H.S. GARG,* and D.S. BHAKUNI


Central Drug Research Institute, Lucknow 226001, India

ABSTRACT.—A new neolignan, designated schmiditin [1], has been isolated from *Piper schmidtii*. The known lignan galgravin, as well as friedelin, 1-triacontanol, octacosanoic acid, β -sitosterol, and its β -O-glucoside were also isolated from the hexane-soluble fraction of the EtOH extract which showed antiamoebic activity (in vitro) at 1000 µg/ml. The structure of schmiditin [1] was established by ¹H- and ¹³C-nmr spectroscopy. None of the isolated compounds showed antiamoebic activity.

The genus *Piper* is distributed throughout the tropical and subtropical regions of the world. In India there are about thirty species (1). *Piper* species are rich sources of lignans and neolignans (2). Many of these exhibit biological activities (3-7).

The EtOH extract of the aerial parts of *Piper schmidtii* Hook. f. (Piperaceae) exhibited antiamoebic activity (8) in vitro against *Entamoeba histolytica*, Strain G.S. We report the isolation and structure elucidation of a new neolignan named schmiditin [1], along with several other known compounds. The structure of schmiditin [1], belonging to the $\Delta^{8'}$ -3',4',5',6'-tetrahydro-7.O.4',8.3' type of lignans (9), was determined by ¹H- and ¹³C-nmr analysis employing decoupling experiments.

The crude EtOH extractive of the shed-dried aerial parts was fractionated into hexane-, $CHCl_3$ -, and MeOH-soluble fractions. Of the three fractions tested against *E. histolytica* (in tissue culture) in vitro for antiamoebic activity, the hexane-soluble fraction exhibited

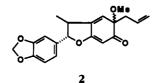
¹CDRI Communication No. 4026.

90% protection at a dose of 1000 μ g/ml. On cc over Si gel G, the hexane-soluble fraction yielded a mixture of fatty hydrocarbons (not investigated further), friedelin, 1-triacontanol, β -sitosterol, octacosanoic acid, and an oil which on repeated cc finally yielded schmiditin [1] as a colorless crystalline needles (100 mg), mp 98–100°, $\{\alpha\}D - 21^\circ (c = 1.0,$ MeOH), another lignan characterized as galgravin (10), and the very common β -D-glucoside of β -sitosterol.

Schmiditin [1] analyzed for C21H26O6 (elemental analysis and fdms $[M + H]^+$ m/z 375). The ir spectrum showed the presence of a hydroxy group (3500 cm^{-1}), and the uv spectrum in MeOH showed λ max 235 and 285 nm. ¹H nmr of schmiditin [1], recorded at 400 MHz and aided with decoupling experiments, was very informative. The presence of a methylenedioxy group at δ 5.9 (2H, s) and two methoxy methyls at δ 3.3 (3H, s) and 3.6 (3H, s) was evident. The three aromatic protons resonated between δ 6.72 and 6.84. The H-2 appeared as a narrow doublet at δ 6.7 (d, J = 1 Hz) overlapping the high field doublet signal of the two ortho coupled protons H-5 and H-6, which was centered at δ 6.8 (2H, dd, J = 10 and 1 Hz), indicating a 1,3,4 substitution pattern of the aromatic ring. The presence of a CH₃-CH-CH-O grouping was indicated by a secondary methyl doublet at $\delta 0.96(3H, d,$ J = 7 Hz) coupled to a proton at δ 2.77 (m), which was overlapped by one of the

methylene protons at C-6'. The latter proton in turn was coupled to an oxybenzylic methine proton at δ 4.2 (1H, d, I = 10 Hz), as confirmed by decoupling experiments. The presence of an allvl side chain attached to an olefinic carbon was evidenced by the presence of the C-7' methylene protons centered at δ 3.1 (2H, d, d, $J_{7'a-7'b} = 14$ Hz, $J_{7'-8'} = 3$ Hz), while H-8' appeared as a multiplet at δ 5.8 (m). The exocyclic methylene protons resonated at 8 5.14 (1H, d, d, $J_{8'-9'a} = 8$ Hz and $J_{9'a-9'b} = 1.5$ Hz) and δ 5.16 (d, d, $J_{8'-9'b} = 16$ Hz and $J_{9'a=9'b} = 1.5$ Hz). A singlet at δ 5.38 indicated the presence of an isolated trisubstituted double bond and was assigned to H-2'. The presence of a carbinol proton H-5' coupled to methylene protons was indicated by a double doublet at δ 4.1 (1H, dd, $J_{5'-6'a} = 4$ and $J_{5'-6'b} = 3$ Hz). The two methylene protons at C-6', in turn, appeared at δ 1.98 (1H, dd, $J_{6'a-6'b} = 14$ and $J_{6'a-5'} = 4$ Hz) and δ 2.77 (m), suggesting their

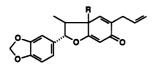
presence in a rigid framework. The signal at δ 2.77 (2H, m) accounted for H-6'b and H-8 protons overlapping each other, leading to its multiplicity. The above findings were fully in agreement with structure **1** for schmiditin.

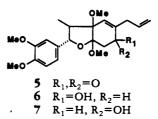

Schmiditin [1] on acetylation (Ac₂O/ pyridine) yielded a monoacetate as a viscous oil consistent with the formula $C_{23}H_{28}O_7$ ([M]⁺ 416 m/z). The ¹H nmr of the monoacetate showed the presence of an acetoxy methyl singlet at δ 2.0, and there was no shift of any carbinol proton. This was in agreement with the tertiary nature of the hydroxyl group in 1.

¹³C nmr aided with DEPT further confirmed the placement of the functional groups in schmiditin [1]. Comparison of ¹³C-nmr data (Table 1) of 1 with those reported for neolignans (11) such as Δ^8 -1',6'-dihydro-6'-oxo-7.O.4',8.3' lignan [2] (12), mirandin A [3] (11) and mirandin B [4] (11) fully supported the linkage of the two C₆-C₃

		Compound			
1	2ª	3ª	4 ª		
. 134.2	131.4	135.5	132.7		
. 107.5	106.1	102.6	103.5		
. 148.1	148.1	152.8	153.3		
. 147.6	148.1	137.2	138.4		
. 107.8	108.2	152.8	153.5		
. 120.5	120.0	102.6	103.5		
. 84.9	93.7	94.3	91.2		
48.9	42.6	46.9	49.8		
. 9.2	16.1	16.1	6.9		
146.1	80.8	142.5	142.8		
121.1	134.1	131.6	130.9		
81.3	140.2	80.9	77.6		
104.6	172.0	172.6	174.3		
65.9	99.5	104.6	102.7		
34.2	199.3	186.8	186.8		
39.1	45.0	33.2	33.5		
135.4	130.7	134.8	134.8		
. 117.1	119.0	116.9	117.1		
101.1	101.3	1			
48.9, 51.8	53.5	50.3, 56.1,	51.5, 56.1,		
		60.7	60.7		
	. 134.2 107.5 148.1 147.6 107.8 120.5 84.9 . 48.9 . 9.2 . 146.1 . 121.1 . 81.3 . 104.6 . 65.9 . 34.2 . 39.1 . 135.4 . 117.1 . 101.1	. 134.2 131.4 . 107.5 106.1 . 148.1 148.1 . 147.6 148.1 . 147.6 148.1 . 107.8 108.2 . 120.5 120.0 . 84.9 93.7 . 48.9 42.6 . 9.2 16.1 . 146.1 80.8 . 121.1 134.1 . 81.3 140.2 . 104.6 172.0 . 65.9 99.5 . 34.2 199.3 . 39.1 45.0 . 135.4 130.7 . 117.1 119.0 . 101.1 101.3 . 48.9, 51.8 53.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

TABLE 1. ¹³C Chemical Shifts of Compounds 1, 2, 3, and 4 in ppm.


^aThe values for compounds 2, 3, and 4 are from Wenkert et al. (11).


units in 1 to be of the $\Delta^{8'}, 3', 4', 5', 6'$ tetrahydro-7.O.4',8.3' type with the stereochemistry as shown in 1. The significant features of ¹³C-nmr signals of schmiditin [1] were the presence of four carbons bearing oxygen functions at δ 65.9, 84.9, 81.3, and 104.6 in addition to those carrying a methylenedioxy group in a benzene ring (δ 147.6 and 148.1). Of these, the secondary carbon at δ 84.9 was assigned to C-7, and the other at δ 65.9 accounted for a secondary carbon carrying the methoxy group at C-5' (adjacent to a methylene group as evidenced by ¹H nmr). The presence of two tertiary carbinol carbons was evident by an anomeric carbon at C-4' resonating at δ 104.6, and the other tertiary carbon at δ 81.3 could best be assigned to the carbon carrying the other methoxyl group at C-3'. The assignments of other carbons (Table 1) were fully in agreement with structure 1 for schmiditin.

Piperenone [5], reported from *Piper* futokadzura Sieb. et Zucc. (13), carries an oxo group at C-6', and its reduction with LiAlH₄ yielded the epimeric alcohols 6 and 7 which were found to be different from schmiditin [1] and as such the methoxy group in 1 was placed at C-5', which was more feasible on biogenetic considerations.

The mass spectrum of 1 showed a weak molecular ion $([M]^+ m/z 374)$ and the parent ion appeared at $m/z 342 [P]^+$, showing easy loss of MeOH from the molecular ion. A weak peak at m/z 356

3 $R=\beta$ -OMe 4 $R=\alpha$ -OMe

accounted for the loss of H_2O from the molecular ion. The other significant features in the ms of 1 were the presence of an ion at m/z 301 [P – allyl group]⁺, which subsequently showed the loss of methoxyl to give a peak at m/z 271. The characteristic peaks arising from the aromatic part of the molecule appeared at m/z 121, 135 and 150. A significant peak at m/z 211 could best be assigned to an ion arising by the cleavage of the C₉ aromatic unit of the neolignan. None of the isolated compounds showed antiamoebic activity.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.— Mp's are uncorrected and were taken in open capillaries; it spectra were determined on a Perkin-Elmer model 331 grating recording spectrometer in KBr pellets. The uv spectra in MeOH were recorded on a Perkin-Elmer Model 202 recording spectrometer. ¹H-nmr spectra were recorded in CDCl₃ unless otherwise stated, on a 400 MHz (Brucker WM) spectrometer, and ¹³Cnmr spectra were recorded on the Brucker WM spectrometer at 100 mHz. The mass spectra were recorded on a JMSD-300 mass spectrometer fitted with a direct inlet system.

PLANT MATERIAL.—The aerial parts of P. schmidtii were collected from Dodolabetta Reserve Forest, Tamil Nadu, India, in July 1984, by the Botany Division of CDRI, and a voucher specimen (no. 4526) of the plant is preserved in the herbarium of the Institute.

EXTRACTION AND ISOLATION.—The whole plant was air-dried under shade (6 kg dry wt), powdered, and extracted with 95% EtOH 5 × 15 liters at room temperature. The total EtOH extract was concentrated under reduced pressure, and the crude extract was successively fractionated into hexane-soluble and CHCl₃-soluble fractions. The anti-amoebic activity was localized in the hexane fraction. The individual fractions were tested in vitro (tissue culture method) against *E. bistolytica* at different dilutions. The hexane-soluble fraction at 1000 µg/ml dilution killed 98% of the trophozoites, while other fractions had only marginal or no effects.

The crude hexane-soluble extract (60 g) was chromatographed over Si gel (1000 g), eluting with hexane, hexane- C_6H_6 (1:1), hexane- C_6H_6 (1:3), C_6H_6 , C_6H_6 -EtOAc (99:1), C_6H_6 -EtOAc (95:5), C_6H_6 -EtOAc (9:1), EtOAc, and MeOH mixtures of increasing polarity. About 400 fractions of 150 ml each were collected and yielded the following compounds: friedelin, 1-triacontanol, β -sitosterol, galgravin, and β -sitosterol- β -D-glucoside.

SCHMIDITIN [1].—Successive elution with C₆H₆/EtOAc 5% (fractions 224-228) yielded a mixture (800 mg) as oil which was rechromatographed on a Si gel column. On elution with C6H6-EtOAc (95:5), a crystalline compound was obtained which on repeated crystallization with MeOH gave white crystalline needles of schmiditin [1] (100 mg): mp 98-100°, $[\alpha]D - 21^{\circ}$ (MeOH); uv λ max (MeOH) 235 (log ε, 2.86), 285 (log ϵ , 2.93) nm; ir ν max 3500, 2995, 1630, 1640, 1500, 1430, 1260, 1120, 1089, 980, 940, 840 cm⁻¹; ¹H nmr δ 0.96 (3H, d, J = 7 Hz, Me-9), 1.9 (1H, dd, J = 14, 3.5 Hz, H-6'b), 2.77 (2H, m, H-8, H-6'a), 3.1 (2H, dd, J = 14', 3 Hz, H-7'), 3.3 (3H, s, OMe), 3.6 (3H, s, -OMe); 4.1 (1H, dd, J = 4, 3 Hz, H-5');4.2 (1H, d, J = 10 Hz, H-7), 5.16 (2H, dd, J = 10, 2.5 Hz, H-9'a, -9'b), 5.38(1H, s, H-2),5.80 (1H, m, H-8'), 5.94 (2H, s, -OCH₂O-), 6.72 (2H, H-2, -6), 6.84 (1H, H-5); ms m/z $[M]^+$ 374 (2%), 342 (64%), 327 (42%), 301 (32%), 271 (77%), 236 (50%), 211 (100%), 162 (54%), 135 (74%), 121 (40%), 150 (44%); calcd for C₂₁H₂₆O₆, C 67.4, H 6.9, found C 67.25, H 7.35%; ¹³C nmr (CDCl₃) see Table 1.

ACETYLATION OF 1.—Compound 1 (20 mg) was taken in pyridine (1 ml) treated wth Ac₂O (0.5 ml), refluxed at 120° for 4 h, processed by pouring over H₂O, left overnight, and extracted with Et₂O. The Et₂O-soluble residue on chromatography over Si gel and elution with hexane yielded an oily acetate, $C_{23}H_{28}O_7$ (10 mg): ir ν max (KBr) 2970, 1730, 1570, 1499, 1450, 1380, 1250, 1120, 1089, 980, 840, 840 cm⁻¹; ¹H nmr δ 0.96 (3H, d, J = 7 Hz, Me-9), 1.9 (1H, dd, J = 14, 3.5 Hz, H-6'b), 2.0 (s, 3H, OAc-4'), 2.77 (2H, m, H-8, H-6'a), 3.1 (2H, dq, J = 14, 3 Hz, H-7'), 3.3 (3H, s, -OMe), 3.6 (3H, s, -OMe), 4.1 (1H, dd, J = 4 Hz, H-5'), 4.2 (1H, d, J = 10 Hz, H-7), 5.16 (2H, dd, $J = 10, 4 \text{ Hz}, = \text{CH}_2-9'), 5.37 (1H, s, H-2'), 5.80 (1H, m, H-8'), 5.94 (2H, s, -OCH_2O-1), 6.72 (2H, H-2, -6), 6.84 (1H, H-5); ms m/z [M]⁺ 416 (60%), 400 (15%), 377 (15%), 315 (20%), 271 (100%), 236 (20%), 135 (50%).$

ACKNOWLEDGMENTS

Thanks are due to the staff of Microbiology Division for testing of extracts and compounds for antiamoebic activity and the staff of RSIC for spectral data.

LITERATURE CITED

- "Wealth of India, Raw Materials." Ed. by A. Krishnamurthi, CSIR, New Delhi, 1969, Vol. 8, pp. 83 and 117.
- J.R. Cole and R.M. Wiedhopf, in: "Chemistry of Lignans." Ed. by C.B.S. Rao, Andhra University Press, Andhra Pradesh, India, 1978, p. 49.
- S.K. Koul, S.C. Taneja, K.L. Dhar, and C.K. Atal, *Phytochemistry*, 22, 999 (1983).
- D. Dwuma-Babu, S.K. Ayim, T.T. Dabra, H.N. ElSohly, J.E. Knapp, D.J. Slatkin, and P.L. Schiff Jr., *Lloydia*, 38, 343 (1975).
- A. Banerji and S. Pal, J. Nat. Prod., 45, 672 (1982).
- T.Y. Shen, S.B. Hwang, M.N. Chang, T.W. Doebber, M.H.T. Lam, I.M.S. Wu, X. Wang, G.Q. Ham, and R.Z. Li, *Proc. Natl. Acad. Sci. USA*, 82, 672 (1985).
- K. Matsui and K. Munakata, *Tetrahedron* Lett., 24, 1905 (1975).
- Z. Abraham, D.S. Bhakuni, H.S. Garg, A.K. Goel, B.N. Mehrotra, and G.K. Patnaik, *Indian J. Exp. Biol.*, 24, 48 (1986).
- O.R. Gottlieb, in: "Chemistry of Lignans." Ed. by C.B.S. Rao, Andhra University Press, Andhra Pradesh, India, 1978, p. 277.
- G.K. Hughes and E. Ritchie, Aust. J. Chem., 7, 104 (1954).
- E. Wenkert, H.E. Gottlieb, O.R. Gottlieb, M.O. Da S. Pereira, and M.D. Formiga, *Phytochemistry*, 15, 1547 (1976).
- 12. O.R. Gottlieb, M.L. Da Silva, and Z.S. Ferreira, Phytochemistry, 14, 1825 (1975).
- K. Matsui and K. Munakata, Tetrahedron Lett., 1905 (1975).

Received 26 May 1989